
Determining the Orbit of Eros
Robert Arlt Jr.

12.410

November 18, 2009

Abstract

In order to ascertain if George R. Wallace, Astrophysical Observatory (WAO) is properly equipped

for observation and calculation of Near-Earth Asteroid (NEA) orbits, three observations of 433 Eros

were made and Eros’s orbit calculated using Gauss’s method of orbit determination. The results show

that WAO is properly equipped to calculate orbits of NEAs with high brightness such as Eros to an ac-

curacy of approximately two-percent. The results also indicate that Gauss’s method would not be ap-

propriate for use in further study. A more generalized orbit-fitting algorithm, such as that employed by

California Institute of Technology’s Jet Propulsion Laboratory (one that can provide error analysis and

incorporate more than three observations) would be more appropriate for future use.

Introduction

Near-Earth Objects (NEOs) are comets and

asteroids that have entered into orbits that bring

them close to the earth. Comets were initially com-

posed primarily of water ice that may have entirely

dissipated or may still be frozen around either dust

particles; formed billions of years ago at the same

time as the solar system, offer a look into the cre-

ation of the solar system and the composition of

the primordial mixture from which the planets

formed.

Some NEOs are interesting for other rea-

sons – Near-Earth Asteroids (NEAs) that are over

one kilometer in diameter, for example, pose a po-

tential risk for severe catastrophic events should

one hit the Earth. Because of this, NASA is cur-

rently under a U.S. Congressional mandate to

identify 90% of all NEAs of this size. After an NEA

is identified, its orbit must be calculated in order to

assess the possibility of it hitting the Earth.

Knowing accurate orbits of NEOs is also

useful for further study of the objects. Accurate po-

sitional information allows the shape, size, and

composition of NEOs to be determined with further

observation.

The purpose of this project was to explore

the process of NEA identification and orbit calcu-

lation. Unfortunately, the resources needed to

identify NEAs, a process that is best accomplished

with a large-scale sky-survey project, were un-

available. Therefore, the project would explore

only the second half of NASA’s mission — calcu-

lating the orbit of an NEA. The project also pro-

vided information on the feasibility of calculating
Arlt 1

the orbits of asteroids closer to the Earth than main

belt asteroids and with higher eccentricities using

data taken with the relatively small fourteen-inch

diameter Schmidt-Cassegrain telescopes at

George R. Wallace, Astrophysical Observatory

(WAO).

433 Eros, an Amor-family asteroid that

crosses the orbital path of Mars, was chosen for

this project because of its rise and set times, its or-

bital period, and its relatively bright apparent mag-

nitude (a range of ten to 12 over the duration of

this project) among available asteroids, which re-

sulted in good signal-to-noise ratios. Additionally,

the orbit of Eros is known, providing a chance to

assess the success of this project’s techniques

and to quantize the accuracy and degree of preci-

sion of the calculation.

Gauss’s method was used to calculate the

orbit because it requires only three positional ob-

servations to be made. The low amount of re-

quired data was especially desirable because of

the limited availability of observation time due to

the scheduling of telescopes and the weather pat-

terns at WAO.

Gauss’s method requires that approxi-

mately five percent of the object’s period be ob-

served in order to obtain a proper fit of the orbit.

Thus, for Eros’s period of approximately 650 days,

the three observations had to be spread out across

the time period of a month.

Observation

The three required observations took place

on September 21, 2009; October 12, 2009; and

October 26, 2009. The same fourteen-inch f/11

Celestron C14 Schmidt-Cassegrain telescope was

used each night. The telescope was equipped

with a SBIG STL-1001E imaging CCD camera with

clear, B, V, R, I, and VR filters, and an Optec TCF-

S3 autofocusser. The telescope sat upon a Soft-

ware Bisque Paramount ME robotic German

equatorial mount that was driven by Software

Bisque’s TheSky6 installed on an Apple MacMini

running Microsoft Windows XP operating system.

The camera was controlled by Software Bisque’s

CCDSoft installed on the same MacMini.

TheSky6 utilized a 300 star ProTrack

TPoint pointing model with periodic-error correc-

tion resulting in pointing that was accurate to ap-

proximately 29 arcseconds and tracking with a

maximum exposure time of two to four minutes de-

pending on the position of the object.

At the beginning of the night, the computer

was turned on, the time synched to Haystack Ob-

servatory’s time server, and the telescope turned

on and homed. The camera was cooled to a tem-

perature of -20 °C (excepting October 26 when the

telescope was previously used for another project

and the temperature was set at -15 °C).

Once the temperature of the camera stabi-

lized, the telescope was focused for use with the R

Arlt 2

filter. Then calibration frames were taken. 40 bias

images and 20 dark images of 30-second expo-

sure times were taken each night.

After the calibration frames were taken, the

coarse position of Eros was loaded through

TheSky6 from Harvard Minor Planet Center and

the telescope pointed at the coordinates. A test

frame was taken and the position of the asteroid

ascertained by comparing the frame to a DSS-

finder chart produced with the help of koronisfam-

ily.org. Once the frame was verified, a suitable star

was chosen for centering and telescope tracking.

A suitable star was one which placed the

position of the asteroid slightly to the upper left of

center in the image when viewed within CCDSoft.

This position meant that Eros would drift toward

the center of the frame as the night progressed. A

sidereal-tracking rate was chosen for the project

because it increased the accuracy of the plate so-

lution as opposed to tracking Eros itself.

With the telescope pointed at the correct

field, data acquisition began. An exposure time of

30 seconds through the R filter was determined to

give the best signal-to-noise ratio of Eros while at

the same time ensuring little drift of the object due

to its difference in motion speed from sidereal rate.

The exposure time also prevented the stars them-

selves from streaking from the imperfection of the

mount’s tracking ability.

At least 20 frames of the object were taken

each night to ensure that at least one scientifically

usable frame was available. Fortunately, the

weather was not an issue on any of the observa-

tion nights and each night produced a host of suit-

able images.

Data Reduction

Calibration

The National Optical Astronomy Observa-

tories’ Image Reduction and Analysis Facility

(IRAF) was used for the calibration of the images.

The particular distribution of IRAF used was part

of the cygwin installation of Scisoft (this package

was developed by Robert Arlt Jr. and was available

at http://dukrat.net/public/scisoft at the time of writ-

ing). The exact settings used for each package

are available in Appendix A.

The first step in the calibration process was

the creation of a bad-pixel mask. From previous

work on bad-pixel masks at WAO, the best masks

were produced from a set of long-exposure darks

requiring an hour at the minimum. It is also known

that the SBIG STL-1001E cameras at WAO can

develop new bad pixels over time periods as short

as 38 days (http://occult.mit.edu/people/studen-

tReports2009/robert/robert.htm). However, obser-

vation time constraints dictated that a new

bad-pixel mask could not be made for the project.

Instead, a bad-pixel mask generated from data

taken at WAO on the same equipment on August

04, 2009 was used. Figure 1 shows the bad-pixel

Arlt 3

mask that was used.

The bad-pixel mask was generated from

two flat fields, one with a large number of back-

ground counts (~35000) and one with a low num-

ber of background counts (~3500), and 11 darks

of five-minute exposure time.

Amaster-bias image was created using the

IRAF package zerocombine. The darks and flats

were then bias corrected using the IRAF package

ccdproc. The low-count flat was divided by the

Fig. 1: The bad pixel mask used for the project.
Notice the uniformity of the bad pixels across most of the image with an increase near the edges. Each bad pixel presents
the opportunity to negatively affect the centroiding process used to find the logical position of stars. Identifying each bad pixel
and interpolating a new value for it from surrounding data points increases the accuracy of a centroid-produced position.

Arlt 4

high-count flat using the IRAF package imarith.

Then the first part of the bad-pixel mask was cre-

ated with the IRAF package ccdmask. The sec-

ond part of the bad-pixel mask was created by

combining the darks with the IRAF package im-

combine and then producing the mask with the

IRAF package ccdmask. The two parts were then

combined to make the final bad-pixel mask by con-

verting the two parts to fits files with the IRAF pack-

age imcopy and then combining the two parts with

the IRAF package imcombine. Finally, the bad-

pixel mask was converted to a pl file with the IRAF

package imcopy.

The second step in calibrating the images

was creating the master-bias and master-dark im-

ages for each night. The bias images were bad-

pixel-mask corrected and combined to make the

master-bias image with the IRAF package zero-

combine. The darks were bad-pixel-mask cor-

rected, bias corrected, and combined to make the

master dark using the IRAF package darkcombine.

Observation time constraints also dictated

that flats could not be taken at the time of observ-

ing. Instead, a single set of flats from October 14,

2009 was used. The flats were bad-pixel cor-

rected, bias corrected, and combined to make the

master flat used for all nights; the IRAF package

flatcombine was used.

The master dark images were then exam-

ined using the IRAF package imexam. The darks

had low counts of mean approximately four and

standard deviations of approximately four as well.

This meant that dark-correcting the images would

do little to actually correct the images and would

only add noise. Therefore, it was decided that the

images would not be dark-corrected. The science

images were bad-pixel-mask corrected, nightly

master-bias corrected, and master-flat corrected

using the IRAF package ccdproc.

Astrometry

The next step of the data reduction process

involved calculating the right ascension (RA) and

declination (Dec) of Eros in each image. The se-

lection process for the three images used included

ensuring that Eros was not overlapping another

object and that all the objects had crisp discs. Ten

bright isolated stars were chosen in each frame.

Then, the logical (on CCD chip) centroid coordi-

nates of the ten stars and Eros were determined

with the IRAF package autoast (the autoast pack-

age is developed by Eran Ofek and was available

from http://wise-obs.tau.ac.il/~eran/iraf/astrome-

try.html at time of writing). The RA and Dec of the

ten stars were then obtained from the USNO-A2.0

catalog of astrometric standard stars using

TheSky6 as an interface to the database.

From the RA, Dec, and logical coordinates

of the ten stars, a plate solution was obtained.

This was accomplished with javascript (available

from http://www.phys.vt.edu/~jhs/SIP/astrome-

Arlt 5

trycalc.html at the time of writing) based on a

BASIC program written by Jordan D. Marche that

calculated the plate constants of the transforma-

tion equations

u = x + ax + by + c, (Eq. 1)

v = y + dx + ey + f, (Eq. 2)

where x,y gives the logical centroid position of an

object and a, b, c, d, e, and f are the plate con-

stants. As u and v are related to RA and Dec by

RA = atan(u / b), (Eq. 3)

Dec = atan((sin(do) + vcos(do))(u2 + v2)-1/2), (Eq. 4)

where do is a reference declination chosen to be

approximately in the center of the image, the plate

constants can be used to calculate RAand Dec co-

ordinates from logical coordinates and vice-versa.

Table 1, Table 2, and Table 3 summarize the inputs

and outputs for each image used for the orbit cal-

culation. The errors on the RA and Dec of Eros

are derived from the root-mean-square residuals

of the least-mean-square fitting process used to

calculate the plate constants.

Orbit Determination

The heliocentric ecliptic position and veloc-

ity vectors were then calculated from the three sets

of RA and Dec coordinates of Eros at known times

observed from a known location. This was ac-

complished within Matlab with a modified version

of Björn J. R. Davidsson’s “Computer codes for

Computer Exercise #1” (available from

http://www.astro.uu.se/~bjorn/celmechlab01codes.

Arlt 6

Arlt 7

html at time of writing). The script (see

Appendix B) utilized multiple iterations of

Gauss’s method of orbit determination in

order to converge upon a least-mean-

square fit of the state vectors.

The state vectors were then used

to calculate the classical orbital elements

assuming a simple two-body system.

This calculation was performed by the

Java program “Kepler Orbit” written by Di-

eter Egger (available at http://math-

ed.com/Resources/GIS/Geometry_In_Sp

ace/java1/Temp/TLOrbit.html at time of

writing).

Results

Fig. 2: Comparison of calculated and JPL orbits of Eros (seen from Earth’s plane of orbit).
Observe the closeness of the ascending node and inclination element between the calculated orbit of Eros and that
from JPL. A change in colors indicates the path passing through an axis plane.

Table 4 shows the results of the orbit calculation. The results show that the orbit calculation was

successful. However, the error offsets of the calculated orbit from the actual orbit of Eros as calculated

Arlt 8

Fig. 3: Comparison of calculated and JPL orbits of Eros (seen perpendicularly from Earth’s plane of orbit).
Notice the two areas of the orbits that overlay each other. One of these areas is located near Eros’s location during
observations, the other would be the location of Eros a half-orbital period of time later.

by California Institute of Technology’s Jet Propul-

sion Laboratory (JPL) indicate that the calculation

could be improved upon. Figure 2, Fig. 3, and Fig.

4 plot the JPL Eros orbit against the calculated

Eros orbit. The plots were created using the java

program “OrbitViewer” written by Osamu Ajiki and

Ron Baalke (available from

http://www.astroarts.co.jp/products/orbitviewer/ind

ex.html at time of writing).

Some amount of the error can be explained

by the seeing conditions at WAO and the error in

the plate solution. However, these two sources

cannot account for all of the total error. A large part

of the total error comes from the method of calcu-

lation used.

Conclusions

The use of Gauss’s method of orbit deter-

mination was crucial for this project because it al-

lowed the feasibility of using data taken at WAO to

calculate the orbit of an NEA to be assessed with

only three observations taken within the time-re-

stricted period of a month. For this application and

Arlt 9

Fig. 4: Comparison of calculated and JPL orbits of Eros (seen out of Earth’s plane of orbit).
This view of the orbits offers a better three dimensional understanding of the difference between the two orbits.

for rapid initial orbit determination, Gauss’s method

is an excellent choice. However, Gauss’s method

is a poor choice for calculating an accurate orbit of

an NEAbecause it cannot offer the necessary pre-

cision needed to do so.

In order to calculate a highly precise and

accurate orbit, a more robust method is needed

that is capable of using more than three observa-

tions. A method of this type has the disadvantage

of requiring observations throughout the full revo-

lution period of the object. However, such a

method has the advantage of being more accurate

than Gauss’s method as well as providing error

analysis through the least-squares-fit residuals.

The method employed by JPL is an example of

such a method. Over 3500 observations were

used in the calculation of JPL’s orbit for Eros, and

that calculation has errors on the order of only a

millionth of a percent.

Arlt 10

Appendix A

Bold font indicates that values are modified from default unlearn values.
Packages not listed here are run with default unlearn values.

PACKAGE = ccdred
TASK = zerocombine

input = List of zero level images to combine
(output = bias.fits) Output zero level name
(combine= average) Type of combine operation
(reject = minmax) Type of rejection
(ccdtype=) CCD image type to combine
(process= no) Process images before combining?
(delete = no) Delete input images after combining?
(clobber= no) Clobber existing output image?
(scale = none) Image scaling
(statsec=) Image section for computing statistics
(nlow = 0) minmax: Number of low pixels to reject
(nhigh = 2) minmax: Number of high pixels to reject
(nkeep = 1) Minimum to keep (pos) or maximum to reject (neg)
(mclip = yes) Use median in sigma clipping algorithms?
(lsigma = 3.) Lower sigma clipping factor
(hsigma = 3.) Upper sigma clipping factor
(rdnoise= 0.) ccdclip: CCD readout noise (electrons)
(gain = 1.) ccdclip: CCD gain (electrons/DN)
(snoise = 0.) ccdclip: Sensitivity noise (fraction)
(pclip = -0.5) pclip: Percentile clipping parameter
(blank = 0.) Value if there are no pixels
(mode = ql)

PACKAGE = ccdred
TASK = ccdproc

images = List of CCD images to correct
(output =) List of output CCD images
(ccdtype=) CCD image type to correct
(max_cac= 0) Maximum image caching memory (in Mbytes)
(noproc = no) List processing steps only?

(fixpix = *) Fix bad CCD lines and columns?
(oversca= no) Apply overscan strip correction?
(trim = no) Trim the image?
(zerocor= *) Apply zero level correction?
(darkcor= no) Apply dark count correction?
(flatcor= *) Apply flat field correction?
(illumco= no) Apply illumination correction?
(fringec= no) Apply fringe correction?
(readcor= no) Convert zero level image to readout correction?
(scancor= no) Convert flat field image to scan correction?

(readaxi= line) Read out axis (column|line)
(fixfile= abadpix.pl) File describing the bad lines and columns
(biassec=) Overscan strip image section
(trimsec=) Trim data section

Arlt 11

(zero = bias.fits) Zero level calibration image
(dark = dark.fits) Dark count calibration image
(flat = flat.fits) Flat field images
(illum =) Illumination correction images
(fringe =) Fringe correction images
(minrepl= 1.) Minimum flat field value
(scantyp= shortscan) Scan type (shortscan|longscan)
(nscan = 1) Number of short scan lines

(interac= no) Fit overscan interactively?
(functio= legendre) Fitting function
(order = 1) Number of polynomial terms or spline pieces
(sample = *) Sample points to fit
(naverag= 1) Number of sample points to combine
(niterat= 1) Number of rejection iterations
(low_rej= 3.) Low sigma rejection factor
(high_re= 3.) High sigma rejection factor
(grow = 0.) Rejection growing radius
(mode = ql)

* indicates that these values change depending on whether or not the images are being bad
pixel mask, bias, or flat corrected

PACKAGE = ccdred
TASK = ccdmask

image = Input image
mask = Output pixel mask
(ncmed = 7) Column box size for median level calculation
(nlmed = 7) Line box size for median level calculation
(ncsig = 15) Column box size for sigma calculation
(nlsig = 15) Line box size for sigma calculation
(lsigma = 20.) Low clipping sigma
(hsigma = 20.) High clipping sigma
(ngood = 5) Minimum column length of good pixel seqments
(linterp= 2) Mask value for line interpolation
(cinterp= 3) Mask value for column interpolation
(eqinter= 2) Mask value for equal interpolation
(mode = ql)

PACKAGE = immatch
TASK = imcombine when creating the second part of the bad pixel mask

input = List of images to combine
output = List of output images
(headers=) List of header files (optional)
(bpmasks=) List of bad pixel masks (optional)
(rejmask=) List of rejection masks (optional)
(nrejmas=) List of number rejected masks (optional)
(expmask=) List of exposure masks (optional)
(sigmas =) List of sigma images (optional)
(imcmb = $I) Keyword for IMCMB keywords
(logfile= STDOUT) Log file

(combine= sum) Type of combine operation
Arlt 12

(reject = minmax) Type of rejection
(project= no) Project highest dimension of input images?
(outtype= real) Output image pixel datatype
(outlimi=) Output limits (x1 x2 y1 y2 ...)
(offsets= none) Input image offsets
(masktyp= none) Mask type
(maskval= 0) Mask value
(blank = 0.) Value if there are no pixels

(scale = none) Image scaling
(zero = none) Image zero point offset
(weight = none) Image weights
(statsec=) Image section for computing statistics
(expname=) Image header exposure time keyword

(lthresh= INDEF) Lower threshold
(hthresh= INDEF) Upper threshold
(nlow = 0) minmax: Number of low pixels to reject
(nhigh = 0) minmax: Number of high pixels to reject
(nkeep = *) Minimum to keep (pos) or maximum to reject (neg)
(mclip = yes) Use median in sigma clipping algorithms?
(lsigma = 3.) Lower sigma clipping factor
(hsigma = 3.) Upper sigma clipping factor
(rdnoise= 0.) ccdclip: CCD readout noise (electrons)
(gain = 1.) ccdclip: CCD gain (electrons/DN)
(snoise = 0.) ccdclip: Sensitivity noise (fraction)
(sigscal= 0.1) Tolerance for sigma clipping scaling corrections
(pclip = -0.5) pclip: Percentile clipping parameter
(grow = 0.) Radius (pixels) for neighbor rejection
(mode = ql)

* indicates that this value is 1000*(number of darks used)

PACKAGE = immatch
TASK = imcombine when creating the bad pixel mask from the first and second parts

input = List of images to combine
output = List of output images
(headers=) List of header files (optional)
(bpmasks=) List of bad pixel masks (optional)
(rejmask=) List of rejection masks (optional)
(nrejmas=) List of number rejected masks (optional)
(expmask=) List of exposure masks (optional)
(sigmas =) List of sigma images (optional)
(imcmb = $I) Keyword for IMCMB keywords
(logfile= STDOUT) Log file

(combine= sum) Type of combine operation
(reject = none) Type of rejection
(project= no) Project highest dimension of input images?
(outtype= real) Output image pixel datatype
(outlimi=) Output limits (x1 x2 y1 y2 ...)
(offsets= none) Input image offsets
(masktyp= none) Mask type
(maskval= 0) Mask value
(blank = 0.) Value if there are no pixels

Arlt 13

(scale = none) Image scaling
(zero = none) Image zero point offset
(weight = none) Image weights
(statsec=) Image section for computing statistics
(expname=) Image header exposure time keyword

(lthresh= INDEF) Lower threshold
(hthresh= INDEF) Upper threshold
(nlow = 1) minmax: Number of low pixels to reject
(nhigh = 1) minmax: Number of high pixels to reject
(nkeep = 1) Minimum to keep (pos) or maximum to reject (neg)
(mclip = yes) Use median in sigma clipping algorithms?
(lsigma = 3.) Lower sigma clipping factor
(hsigma = 3.) Upper sigma clipping factor
(rdnoise= 0.) ccdclip: CCD readout noise (electrons)
(gain = 1.) ccdclip: CCD gain (electrons/DN)
(snoise = 0.) ccdclip: Sensitivity noise (fraction)
(sigscal= 0.1) Tolerance for sigma clipping scaling corrections
(pclip = -0.5) pclip: Percentile clipping parameter
(grow = 0.) Radius (pixels) for neighbor rejection
(mode = ql)

PACKAGE = ccdred
TASK = darkcombine

input = List of dark images to combine
(output = dark.fits) Output dark image root name
(combine= average) Type of combine operation
(reject = minmax) Type of rejection
(ccdtype=) CCD image type to combine
(process= yes) Process images before combining?
(delete = no) Delete input images after combining?
(clobber= no) Clobber existing output image?
(scale = none) Image scaling
(statsec=) Image section for computing statistics
(nlow = 0) minmax: Number of low pixels to reject
(nhigh = 2) minmax: Number of high pixels to reject
(nkeep = 1) Minimum to keep (pos) or maximum to reject (neg)
(mclip = yes) Use median in sigma clipping algorithms?
(lsigma = 3.) Lower sigma clipping factor
(hsigma = 3.) Upper sigma clipping factor
(rdnoise= 0.) ccdclip: CCD readout noise (electrons)
(gain = 1.) ccdclip: CCD gain (electrons/DN)
(snoise = 0.) ccdclip: Sensitivity noise (fraction)
(pclip = -0.5) pclip: Percentile clipping parameter
(blank = 0.) Value if there are no pixels
(mode = ql)

PACKAGE = ccdred
TASK = flatcombine

input = List of flat field images to combine
(output = flat.fits) Output flat field root name
(combine= median) Type of combine operation
(reject = crreject) Type of rejection

Arlt 14

(ccdtype=) CCD image type to combine
(process= yes) Process images before combining?
(subsets= yes) Combine images by subset parameter?
(delete = no) Delete input images after combining?
(clobber= no) Clobber existing output image?
(scale = none) Image scaling
(statsec=) Image section for computing statistics
(nlow = 1) minmax: Number of low pixels to reject
(nhigh = 1) minmax: Number of high pixels to reject
(nkeep = 1) Minimum to keep (pos) or maximum to reject (neg)
(mclip = yes) Use median in sigma clipping algorithms?
(lsigma = 3.) Lower sigma clipping factor
(hsigma = 3.) Upper sigma clipping factor
(rdnoise= 0.) ccdclip: CCD readout noise (electrons)
(gain = 1.) ccdclip: CCD gain (electrons/DN)
(snoise = 0.) ccdclip: Sensitivity noise (fraction)
(pclip = -0.5) pclip: Percentile clipping parameter
(blank = 1.) Value if there are no pixels
(mode = ql)

PACKAGE = user
TASK = autoast

imname = image name
(db_pref= ast.db) name prefix for solution parameters output file
(res_pre= ast.res) name prefix for solution residuals output file
(racen =) Initial guess field center R.A. in sexagesimal format
(deccen =) Initial guess field center Dec. in sexagesimal format
(equinox= 2000.) Equinox of coordinates
(use_key= yes) take as initial guess the header coordinates
(ra_key = objctra) R.A. image header keyword
(ha_key = telha) H.A. image header keyword
(dec_key= objctdec) Dec. image header keyword
(equ_key= epoch) Equinox image header keyword
(st_key = lst) Sidereal Time image header keyword
(ut_key = time-obs) Universal Time image header keyword
(createc= yes) run daofind and create *.coo file
(magfile= default) phot .mag file
(fwhm = 2.62) PSF FWHM in pixels
(readnoi= 15.) CCD read out noise in electrons
(gain = 2.) CCD gain in electrons per count
(scale = 1.2) Approximate CCD scale in arcsec/pix
(numpix = 1024) CCD Width in pixels
(width_a= 1000.) Initial search width in arcsec.
(xytol = 10.) matching tolerance for pgshift
(tol_xyx= 10.) matching tolerance for xyxymatch
(objectn= 100) Max. number of stars to match
(catalogue= usnosa2) catalogue to use (usnoa1 | usnoa2 | usnosa1 | usnosa2)
(fitgeo = general) Fitting geometry
(functio= polynomial) surface type to fit: (chebyshev, legendre, polynomial)
(xxorder= 2) order of Xi fit in X axis
(xyorder= 2) order of Xi fit in Y axis
(xxterms= half) Xi fit cross terms type, (none, half, full)
(yxorder= 2) order of Eta fit in X axis
(yyorder= 2) order of Eta fit in Y axis
(yxterms= half) Eta fit cross terms type, (none, half, full)
(wcsupda= yes) Update the Image WCS
(input_c=) File name containing coordinates (X Y or RA Dec)

Arlt 15

(pre_cf_= out) prefix for output file
(dir_xy2= yes) Transform X Y to RA Dec or vice versa
(interac= no) Interactive rejection of residuals
(succeed= no) succeeded to find astrometric solution
(scat_pa= /cygdrive/e/pal/iraf/wcstools/bin) path for the scat search program
(path_us=) path for the USNO SA1.0 catalogue
(path_us= /cygdrive/e/pal/iraf/usnoa2) path for the USNO SA2.0 catalogue
(path_ng=) path for the GSC North catalogue
(path_sg=) path for the GSC South catalogue
(logfile= autoast.log) logfile name
(errlog = error.log) error log file
(no_line=) Number of stars used in astrometric solution
(run_sam= no) Only for run on same field - Use old catalogue file
(lis2 =)
(lis3 =)
(list =)
(lis_wc =)
(mode = ql)

Note: most of these options must be set differently for each system and image

Arlt 16

Appendix B

% gaussmethod.m
%
% This program uses Gauss method to calculate the equatorial position- and velocity-
% vectors of a Solar System object at a particular instant of time, based
% on observed positions of the object. These vectors may then be used to calculate
% the orbital elements of the object.
% requires date2jd.m and Qfunk.m

%%%%%%%%%%%%%%%%%%%%%%%% OBSERVATIONAL DATA %%%%%%%%%%%%%%%%%%%%%%%

% First observation
t(1)=date2jd(2009, 09, 21, 03, 04, 33.562); % JD of observation OR UT of observation
date2jd(YYYY, MM, DD, HH, MM, SS.SSS)
RA1=[21 47 46.33]; % Right ascension [h m s]
DEC1=[05 19 55.36]; % Declination [deg arcmin arcsec]
% LST1=[22 19 07.779]; % Local sidereal time [h m s]

% Second observation
t(2)=date2jd(2009, 10, 12, 01, 50, 09.784);
RA2=[21 31 43.26];
DEC2=[03 54 23.19];
% LST2=[22 27 19.419];

% Third observation
t(3)=date2jd(2009, 10, 26, 02, 04, 59.342);
RA3=[21 34 18.58];
DEC3=[03 22 30];
% LST3=[23 37 23.191];

% Site location
H =.1029; % Observation elevation (Km)
lat = [42 36 36.8]; % Observation latitude [deg arcmin arcsec]

% settings
iterate = 10000; %Set number of iterations

% Constants

Re = 6378; % Earth's Radius
f = 1/298.26; % Earth’s flattening factor
kgauss=0.01720209895; % The Gauss gravitational constant
deg = pi/180; % Deg -> Rad
mu = 398600;

%%

% Angles to radians

alpha1=15*(RA1(1)+RA1(2)/60+RA1(3)/3600)*deg;
delta1=sign(DEC1(1))*(abs(DEC1(1))+DEC1(2)/60+DEC1(3)/3600)*deg;
%theta1=15*(LST1(1)+LST1(2)/60+LST1(3)/3600)*deg;

alpha2=15*(RA2(1)+RA2(2)/60+RA2(3)/3600)*deg;
delta2=sign(DEC2(1))*(abs(DEC2(1))+DEC2(2)/60+DEC2(3)/3600)*deg;

Arlt 17

%theta2=15*(LST2(1)+LST2(2)/60+LST2(3)/3600)*deg;

alpha3=15*(RA3(1)+RA3(2)/60+RA3(3)/3600)*deg;
delta3=sign(DEC3(1))*(abs(DEC3(1))+DEC3(2)/60+DEC3(3)/3600)*deg;
%theta3=15*(LST3(1)+LST3(2)/60+LST3(3)/3600)*deg;

phi=sign(lat(1))*(abs(lat(1))+lat(2)/60+lat(3)/3600)*deg;

%%%

% Calculate R
for l=1:3

tp(l) = t(l) - 2451545.0;
g(l) = 357.528*deg +.9856003*deg*tp(l);
L(l) = 280.460*deg + .9856474*deg*tp(l);
lambda(l) = L(l) + 1.915*deg*sin(g(l)) + .020*deg*sin(2*g(l));
epsilon(l) = 23.439*deg - .0000004*deg*tp(l);
dist(l) = 1.00014 - .01671*cos(g(l)) - .00014*cos(2*g(l));

x(l) = dist(l)*cos(lambda(l));
y(l) = dist(l)*cos(epsilon(l))*sin(lambda(l));
z(l) = dist(l)*sin(epsilon(l))*sin(lambda(l));

end

R1 = [x(1); y(1); z(1)];
R2 = [x(2); y(2); z(2)];
R3 = [x(3); y(3); z(3)];

% Extract times

t1=t(1);
t2=t(2);
t3=t(3);

Deltahat1=[cos(alpha1)*cos(delta1);sin(alpha1)*cos(delta1);sin(delta1)];
Deltahat2=[cos(alpha2)*cos(delta2);sin(alpha2)*cos(delta2);sin(delta2)];
Deltahat3=[cos(alpha3)*cos(delta3);sin(alpha3)*cos(delta3);sin(delta3)];

% Cunningham system coordinate axes
% expressed in geocentric equatorial system

% xi unit vector equal to Deltahat1

% eta unit vector
eta=cross(Deltahat1,cross(Deltahat3,Deltahat1));
eta=eta/norm(eta);

% zeta unit vector
zeta=cross(Deltahat1,eta);
zeta=zeta/norm(zeta);

% Transformation matrix
% (geocentric equatorial system -> Cunningham system)
RM=zeros(3,3);
RM(1,:)=Deltahat1';
RM(2,:)=eta';

Arlt 18

RM(3,:)=zeta';

% Solar position coordinates in Cunningham system
% "R prime"
R1P=RM*R1;
R2P=RM*R2;
R3P=RM*R3;

% Calculate the geocentric unit position vectors of asteroid
% in Cunningham system
% "Deltahat prime"

% Deltahat1P equals [1,0,0]

Deltahat2P=RM*Deltahat2;
Deltahat3P=RM*Deltahat3;

% Using the notations of the Compendium
% for clarity

xi2=Deltahat2P(1);
eta2=Deltahat2P(2);
zeta2=Deltahat2P(3);
xi3=Deltahat3P(1);
eta3=Deltahat3P(2);

% Print the zeta2 element to the screen
disp(' ');
disp(['zeta2 = ',num2str(zeta2)]);
disp(' ');

% Initial guess of c1 and c3
c1=(t3-t2)/(t3-t1);
c3=(t2-t1)/(t3-t1);

% Allocate space for the geocentric distances "Delta" of
% the asteroid at the time of the three observations

Delta=[0;0;0];

%%
% ITERATION OF GAUSS' METHOD
%%

for i=1:iterate
% Geocentric distances from current c1 & c3
% Eq. (189)
Delta(2)=(-c1*R1P(3)+R2P(3)-c3*R3P(3))/zeta2;
Delta(3)=(Delta(2)*eta2+c1*R1P(2)-R2P(2)+c3*R3P(2))/(c3*eta3);
Delta(1)=(Delta(2)*xi2-c3*Delta(3)*xi3+c1*R1P(1)-R2P(1)+c3*R3P(1))/c1;

% Heliocentric equatorial coordinates of asteroid from current c1 & c3
% Eq. (177)
r1=Delta(1)*Deltahat1-R1;
r2=Delta(2)*Deltahat2-R2;
r3=Delta(3)*Deltahat3-R3;

% Print geocentric distances to screen
disp(['Iteration #',num2str(i),': Delta1 = ',num2str(Delta(1)),...

Arlt 19

'AU Delta2 = ',num2str(Delta(2)),'AU Delta3 = ',num2str(Delta(3)),'AU']);

% Steffensen's method for calculating y1, y2, and y3 (see Eq. 180)
% These are collected in the array y=[y1 y2 y3]
% The quantities called y_(1), y_(2), and y_(3) in the Compendium
% are here denoted yone, ytwo, and ythree.

for j=1:3
% Consider one observational occasion at a time
if (j==1)

% y1 (2->3)
K=sqrt(2*(norm(r2)*norm(r3)+dot(r2,r3)));
m2=(kgauss*(t3-t2))^2/K^3;
L=(norm(r2)+norm(r3)-K)/(2*K);

end;
if (j==2)

% y2 (1->3)
K=sqrt(2*(norm(r1)*norm(r3)+dot(r1,r3)));
m2=(kgauss*(t3-t1))^2/K^3;
L=(norm(r1)+norm(r3)-K)/(2*K);

end;
if (j==3)

% y3 (1->2)
K=sqrt(2*(norm(r1)*norm(r2)+dot(r1,r2)));
m2=(kgauss*(t2-t1))^2/K^3;
L=(norm(r1)+norm(r2)-K)/(2*K);

end;

yone=1;
xstar=(m2/yone^2)-L;
ytwo=1+(m2/yone^2)*4*Qfunk(xstar)/3;
xstar2=(m2/ytwo^2)-L;
ythree=1+(m2/ytwo^2)*4*Qfunk(xstar2)/3;
getout=0;
% while(abs(yone-2*ytwo+ythree)>1e-14 && getout<50)

getout=getout+1;
y(j)=yone-(ytwo-yone)^2/(yone-2*ytwo+ythree);
yone=y(j);
xstar=(m2/yone^2)-L;
ytwo=1+(m2/yone^2)*4*Qfunk(xstar)/3;
xstar2=(m2/ytwo^2)-L;
ythree=1+(m2/ytwo^2)*4*Qfunk(xstar2)/3;

% end;
end;

% Based on y, calculate new values of c1 and c2
c1=y(2)*(t3-t2)/(y(1)*(t3-t1));
c3=y(2)*(t2-t1)/(y(3)*(t3-t1));

end;

% Correct for planetary abberation
t1=t1-0.005768*Delta(1);
t2=t2-0.005768*Delta(2);
t3=t3-0.005768*Delta(3);

if (1==0)
Arlt 20

% Approximate calculation of
% velocity vector at second
% observation
v12=(r2-r1)/(t2-t1);
v23=(r3-r2)/(t3-t2);
v2=((t2-t1)*v12+(t3-t2)*v23)/((t2-t1)+(t3-t2));
end;

if (1==1)% Velocity from f and g series
tau1=kgauss*(t1-t2);
tau3=kgauss*(t3-t2);
f1=1-0.5*tau1^2/norm(r2)^3;
f3=1-0.5*tau3^2/norm(r2)^3;
g1=(tau1-tau1^3/(6*norm(r2)^3))/kgauss;
g3=(tau3-tau3^3/(6*norm(r2)^3))/kgauss;
v2a=(Delta(1)*Deltahat1-R1-f1*r2)/g1;
v2b=(Delta(3)*Deltahat3-R3-f3*r2)/g3;
v2=0.5*(v2a+v2b);
end;

% Transformation to ecliptic system
eps=(23.439-4e-7*(t2-2451545))*deg;
toequa=[1 0 0; 0 cos(eps) -sin(eps); 0 sin(eps) cos(eps)];
toecl=inv(toequa);
r2ecl=toecl*r2;
v2ecl=toecl*v2;

% Print position and velocity vectors to
% the screen

disp(' ');
disp(['Julian date: ',num2str(t2)]);
disp(['Heliocentric ecliptic position vector: [',num2str(r2ecl(1)),',
',num2str(r2ecl(2)),', ',num2str(r2ecl(3)),'] AU']);
disp(['Heliocentric ecliptic velocity vector: [',num2str(v2ecl(1),'%0.5e'),',
',num2str(v2ecl(2),'%0.5e'),', ',num2str(v2ecl(3),'%0.5e'),'] AU/day']);

% coe = coe_from_sv(transpose(r2),transpose(v2));
% fprintf('\n Angular momentum (km^2/s) = %g', coe(1))
% fprintf('\n Eccentricity = %g', coe(2))
% fprintf('\n RA of ascending node (deg) = %g', coe(3)/deg)
% fprintf('\n Inclination (deg) = %g', coe(4)/deg)
% fprintf('\n Argument of perigee (deg) = %g', coe(5)/deg)
% fprintf('\n True anomaly (deg) = %g', coe(6)/deg)
% fprintf('\n Semimajor axis (km) = %g', coe(7))
% fprintf('\n Periapse radius (km) = %g', coe(1)^2/mu/(1 + coe(2)))
% %...If the orbit is an ellipse, output the period:
% if coe(2)<1
% T = 2*pi/sqrt(mu)*coe(7)^1.5;
% fprintf('\n Period:')
% fprintf('\n Seconds = %g', T)
% fprintf('\n Minutes = %g', T/60)
% fprintf('\n Hours = %g', T/3600)
% fprintf('\n Days = %g', T/24/3600)
% end
% fprintf('\n---\n')

Arlt 21

% Qfunk.m
%
% This function evaluates eq. 6.11.31-6.11.32 in Danby

function Q=Qfunk(x)

if (x>0 && x<=0.5)
Q=2*(2*x-1)*sqrt(x-x^2)+asin(2*x-1)+pi/2;
Q=3*Q/(16*(x-x^2)^(3/2));

end;

if (x<0)
Q=2*(1-2*x)*sqrt(x^2-x)-log(1-2*x+2*sqrt(x^2-x));
Q=3*Q/(16*(x^2-x)^(3/2));

end;

if (x==1)
Q=1;

end;

% date2jd.m
function jd = date2jd(varargin)
%DATE2JD Julian day number from Gregorian date.
%
% JD = DATE2JD(YEAR, MONTH, DAY, HOUR, MINUTE, SECOND) returns the Julian
% day number of the given date (Gregorian calendar) plus a fractional part
% depending on the time of day.
%
% Any missing MONTH or DAY will be replaced by ones. Any missing HOUR,
% MINUTE or SECOND will be replaced by zeros.
%
% If no date is specified, the current date and time is used.
%
% Start of the JD (Julian day) count is from 0 at 12 noon 1 January -4712
% (4713 BC), Julian proleptic calendar. Note that this day count conforms
% with the astronomical convention starting the day at noon, in contrast
% with the civil practice where the day starts with midnight.
%
% Astronomers have used the Julian period to assign a unique number to
% every day since 1 January 4713 BC. This is the so-called Julian Day
% (JD). JD 0 designates the 24 hours from noon UTC on 1 January 4713 BC
% (Julian proleptic calendar) to noon UTC on 2 January 4713 BC.

% Sources: - http://tycho.usno.navy.mil/mjd.html
% - The Calendar FAQ (http://www.faqs.org)

% Author: Peter J. Acklam
% Time-stamp: 2002-05-24 13:30:06 +0200
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam

nargsin = nargin;
error(nargchk(0, 6, nargsin));
if nargsin

Arlt 22

argv = {1 1 1 0 0 0};
argv(1:nargsin) = varargin;

else
argv = num2cell(clock);

end
[year, month, day, hour, minute, second] = deal(argv{:});

% The following algorithm is a modified version of the one found in the
% Calendar FAQ.

a = floor((14 - month)/12);
y = year + 4800 - a;
m = month + 12*a - 3;

% For a date in the Gregorian calendar:
jd = day + floor((153*m + 2)/5) + y*365 + floor(y/4) - floor(y/100) + floor(y/400) -

32045 + (second + 60*minute + 3600*(hour - 12))/86400;

Arlt 23

